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FIELD OF INTEREST

The Instrumentation and 
Measurement Society’s 
Field of Interest is the 

science, technology and 
application of 

instrumentation and 
measurement.



Instrumentation & Measurement Society | 

www.ieee-ims.org

CHAPTERS

Region Chapter

s

1-6 8

7 6

8 14

9 4+2+2

10 23

Total 55
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CHAPTER SUPPORT

• Chapter Development Funding 
Program

• Financial support available to 
promote and improve the value of 
your chapter to your current 
(and future) members.

• I&M Society Annual Outstanding 
Chapter Award

• Submitted reports are reviewed 
to determine the winner of this 
award. A certificate is awarded 
to the selected Chapter.

• For more information, see the 
“Chapter Toolbox” on the I&M 
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MEMEBERSHIP 

DEVELOPMENT
• Women in Instrumentation & Measurement

• We strive to continually support the 
unique needs of our female members.

• Student Activities
• Undergraduate Student Rep, Graduate 
Student Rep that sit on the I&M AdCom.

• Young Professionals Program 
• The I&M Society YP Program is 
committed to helping young 
professionals evaluate their career 
goals, enhance early career skills and 
boost professional network.
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CONFERENCES

• Society Flagship Conference: IEEE International 
Instrumentation and Measurement Technology 
Conference (I²MTC)

• Other major sponsored conferences:

• IEEE Medical Measurements and Applications 
(MeMeA)

• IEEE Sensors Applications Symposium (SAS)

• IEEE International Automatic Testing Conference 
(AUTOTESTCON)

• IEEE International Automated Vehicle Validation 
Conference (IAVVC)

• IEEE International Conference on Imaging 
Systems & Techniques (IST)

• IEEE International Symposium on Precision Clock 
Synchronization for Measurement, Control, and 
Communication (ISPCS)

• IEEE International Symposium on Measurements & 
Networking (M&N)

• IEEE International Workshop on Applied 
Measurements for Power Systems (AMPS)

• Full conference listing: https://ieee-
ims.org/events/all-upcoming-conferences

https://ieee-ims.org/events/all-upcoming-conferences
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CONFERENCES
IEEE International 
Workshop on Applied 
Measurements for 
Power Systems 
(AMPS)

https://amps2025.ieee-ims.org/
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PUBLICATIONS

• IEEE Transactions on Instrumentation & Measurement - Impact 

Factor: 5.6

• IEEE Open Journal on Instrumentation & Measurement – now 

indexed in Web of Science (Impact Factor coming this June)

• IEEE Instrumentation & Measurement Magazine - Impact 

Factor: 2.1

• The I&M Newsletter – A bi-monthly (non-reviewed) 

publication used 

to update the membership of the latest Society news.
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EDUCATION
• Distinguished Lecturer 
Program                          
(in-person and virtual)

• Provides expert lectures 
on topics of interest to 
the I&M community. 
Support for travel 
expenses is available.

• Graduate Fellowship and 
Faculty Course 
Development Awards

• Application deadline 
February 1 annually

• Best Dissertation Award
• Application deadline 
February 1 annually

• Undergraduate 
Scholarship Award

• Nomination deadline 1 May 
2025

• IMS Student Contest
• Application deadline 15 
February 2025

• IEEE Learning Network 
and Video Tutorials –
CEU/PDH credits 
available
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TECHNICAL COMMITTIEES

& STANDARDS

23 Active Technical Committees

18 Standards

18 PARs (Project Authorization 

Requests)

Outstanding Technical Committee 

Award

Nomination deadline 15 August 

2025
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SOCIETY AWARDS

• Career Excellence Award

• Distinguished Service 
Award

• Outstanding Young Engineer 
Award

• Technical Award

• J. Barry Oakes Advancement 
Award

• Best Application in I&M 
Award

• Andy Chi Best Paper Award



University “Politehnica” of Bucharest

 has its roots back to 1818

 35000 students

 15 faculties

 2000 academic staff members

 600 auxiliary staff members
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NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY POLITEHNICA

BUCHAREST (UNSTPB)



Flexible Smart Metering for 

Multiple Energy Vectors with 

active Prosumers

An ICT platform for Sustainable 

Energy Ecosystem in Smart Cities

FIWARE for Smart 

Energy Platform

New cost-efficient models 

for flexible Smart grids 

DCNextEvE a H2020 –MSCA (2016-2018) project (Fellow dr. Irina Ciornei) with the main 
purpose to design and analysis of novel methods for management and control of 
multiple building scale DC microgrids
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MICRODERLAB -RESEARCH AND INNOVATION PROJECTS

Information Fusion of Multi-Vector 

Real-Time Data Streams for Energy 

Management in Emerging Power Grids

FIWARE DRIVEN ENERGY COMMUNITIES 

FOR THE FUTURE

NOVEL CURRENT CONTROL FOR 

CLIMATE NEUTRAL ENERGY 

INFRASTRUCTURE

Career Acknowledgement for 

Research (Managers) 

Delivering for the European 

Area 
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• EMERGING POWER SYSTEMS REQUIRE NEW PARADIGM FOR CONTROL

• MEASUREMENT PARADIGM IN POWER SYSTEMS: LOSSY COMPRESSION

• MEASURES FOR VARIABILITY. INFORMATION LOSS. GOODNESS OF FIT

• HIGH REPORTING RATE MEASUREMENTS

• APPLICATIONS: POWER PROFILES, FREQUENCY, NET POWER FLOW VARIABILITY

• ELEMENTS OF DATA ANALYTICS AND FORECASTING BASED ON OUTLIERS

FILTERING (AS A FUNCTION OF VARIABILITY)

OUTLINE
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Montevideo, 27 February 2025 
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Microgrid

Transmission network

[EMERGING] POWER SYSTEMS

DER

DER

GHG 
em.

Lower inertia lower time constants

HIL / 
PHIL

Energy 
harvesting

Power 
electronics

EU Clean Energy 
Transition

Energy vs. 
Power control

• Big Data
• Data Analytics

• Optimal planning

Flexibility
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• site based energy harvesting lower inertia in the AC grids

• Discrimination between steady-state and dynamic operation 
becomes difficult

• control  real-time measurements & accurate estimation 
of load flexibility 

• planning accurate load/generation profiles estimation

Energy control vs.
Power control
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GAME CHANGERS. NON-CONTROLLABLE, INTERMITTENT GENERATION. STATIC

CONVERSION. DC GRIDS. 

• office appliances: DC native loads or DC compatible; 

• Higher efficiency of the energy transfer at higher 
frequencies
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INFORMATION COMPRESSION

•Amplitude U, peak-to-peak value upp

•mean value:

•average value:

•root mean square value; rms:
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Periodic signals ar represented by only a few parameters -> lossy
information compression

waveform, sampling @ 150 kHz
1 min,
1 channel, 
1 measurand: 120 MB

rms reported @ 3s:
1 min, 
1 channel, 
1 measurand: 40 Byte

The measurement paradigm 
in power systems: 

[hidden!] data compression
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DATA AGGREGATION. FURTHER INFORMATION LOSS

• by averaging the measurement result, the message becomes less sensitive to measurement errors; 

• However, there is a lack of significance of the quantity at the end of aggregation process: 

• the decimation introduces an additional uncertainty which is associated NOT with the 
measurement but with the meaning of the resulting quantity;

• this error can be related to the “adequacy” of the information [output message] to the model (of 
the physical system)  definitional uncertainty, an estimate of the semantic noise

𝑢 = (𝑢
∗
𝑀)

2+(𝑢𝑅𝑀
∗ )2; 𝑢𝑅𝑀

∗ =
𝑢𝑅𝑀
2

𝑁 𝑢𝑀
∗ : model/definitional 

uncertainty

𝑢𝑅𝑀 : uncertainty 
associated with the 
measurement value;
𝑢𝑅𝑀
∗ : uncertainty 

associated with the 
reported aggregated 
measurement value;

Measurement:
information compression
(and coding)
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THE MEASUREMENT CONTEXT IN THE EMERGING POWER SYSTEMS

advanced 
measurement 

systems (and data 
communication) 

[still!] 
traditional/old/ 
models for the 
energy transfer

Non optimal control of the energy transfer 

|?

phasor

power[s]

frequency

• 𝒓𝒐𝒄𝒐𝒇

Synchronized 
measurements

WAMCS IoT Unknown aggregation

Lossy algorithms
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22MB/day, as .txt
1.2 MB/day as .zip

Typical information loss:
1s/1h 113%
1s/10min87%
1s/1min64%

MEASUREMENTS AND INFORMATION. REPORTING /COMMUNICATION RATE

Radu Plămănescu, Mihai Valentin 
Olteanu, Viorel Petre, Ana-Maria 
Dumitrescu, Mihaela Albu, 
"Knowledge extraction from highly-
variable power profiles in university 
campus", U.P.B. Sci. Bull., Series C, 
Vol. 84, Iss. 4, 2022

Typical information loss:
1s/1h 140%
1s/10min102%
1s/1min30%

𝑖𝑛𝑓𝑜_𝑙𝑜𝑠𝑠𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝑠𝑡𝑑_𝑎𝑔𝑔𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑃𝑚𝑒𝑎𝑛
1 𝑑𝑎𝑦

𝑃𝑚𝑒𝑎𝑛
1 𝑑𝑎𝑦

=
σ0
𝑁−1𝑃𝑖
𝑁

𝑠𝑡𝑑_𝑎𝑔𝑔𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
σ 𝑃𝑥 − 𝑃𝑎, ^2

𝑁

Grigore Stamatescu, Mihaela Albu, Mihai Sanduleac, "Residential Smart 
Meter Energy Time Series: Active power measurements with 1s reporting 
rate", IEEE Dataport, doi: https://dx.doi.org/10.21227/3yea-xm39.
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EXAMPLES OF LOAD PROFILES

weekend

Stand-by
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EXAMPLES OF LOAD PROFILES

4 July 2023 18 Aug. 2023

10 Sept. 2023 24 Dec. 2023

25 Nov. 2023

28 Oct. 2023
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𝑦𝑖 – estimate/model value
𝑥𝑖 – measured value,

N – number of measured values available during the analysis window 𝑇𝑤
The coefficient of variation of RMSE - CV(RMSE) normalizes the root mean squared error value using the model value.  The coefficient of determination  𝑹𝟐 is a 

metric used to assess the predictive capability of a linear regression model. It indicates the normalized measure of how well the model fits the data.

𝑥𝑖 = 𝑃𝑖;  𝑦𝑖 = ത𝑦 =
σ
𝑖=1
𝑁𝑟 𝑃𝑖

𝑁𝑟
; ෤𝑦𝑖 =

σ
𝑖=1
𝑁𝑠𝑠 𝑃𝑖

𝑁𝑠𝑠
= ෤𝑦

𝑀𝐴𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

𝑛
=
σ𝑖=1
𝑛 𝑒𝑖
𝑛

𝑀𝑆𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛

𝑅𝑀𝑆𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛
= 𝑀𝑆𝐸 𝐶𝑉(𝑅𝑀𝑆𝐸) =

1

ത𝑦

σ𝑖=1
𝑛 𝑥𝑖−𝑦𝑖

2

𝑛

𝑀𝐴𝑃𝐸 =
100

𝑛
σ𝑖=1
𝑛 𝑥𝑖−𝑦𝑖

𝑥𝑖

𝑀𝑆𝑃𝐸 =
100

𝑛
෍

𝑖=1

𝑛
𝑥𝑖 − 𝑦𝑖
𝑥𝑖

2

𝑅2 = 1 −
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

𝑀𝐴𝑆𝐸 =
𝑀𝐴𝐸

1

𝑛−1
σ𝑖=1
𝑛 𝑥𝑖−𝑦𝑝

METRICS FOR SIGNAL VARIABILITY ASSESSMENT AGAINST A CHOSEN MODEL
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MEASUREMENT. INFORMATION LOSS. HOW TO ESTIMATE IT?

The identification process for the parameters that characterize a deterministic signal is equivalent to 
a matching mathematical problem also known in the statistic science field as the goodness of fit.
Goodness-of-fit: a statistical test that determines how well a system fits a set of observations. The 
metrics are usually calculated based on the differences between the observed ​​and the expected 
values ​​according to the model.

G4500 BlackBox
(Elspec)

Nw1=128;  Nw2=1024;  Tw=10 min

𝑀𝑆𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛

𝑅𝑀𝑆𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛
= 𝑀𝑆𝐸

𝐶𝑉(𝑅𝑀𝑆𝐸) =
1

ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛

𝑅2 = 1 −
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

𝑀𝐴𝐸 =
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

𝑛

𝐺𝑜𝐹 = 20𝑙𝑔
෠𝑋

1
𝑛 −𝑚

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

Harold Kirkham , Artis Riepnieks,–

“Dealing with Non-Stationary Signals: 

Definitions, Considerations and Practical 

Implications”, IEEE  PES GM 2016.
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MEASUREMENT DEFINITIAL UNCERTAINTY AND

THE IDEALWAVEFORMMODEL

Nw1=128;  Nw2=1024;  Tw=10 min

𝐶𝑉(𝑅𝑀𝑆𝐸) =
1

ത𝑦

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛

𝑅2 = 1 −
σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

Metrics

Nw1=128; 

Values for phase 

1

Values for phase

2

Values for phase 

3

Reference 

value

MAE[V] 25.493 5.671 5.467 0

MSE[V^2] 853.452 40.162 44.347 0

RMSE[V] 29.21 6.337 6.659 0

CV(RMSE) [V] 0.131 0.028 0.029 0

𝑅2[V] 0.9994 0.9995 0.9999 1

Metrics

Nw2=1024

Values for phase

1

Values for phase

2

Values for phase

3

Reference

value

MAE[V] 8.255 7.663 67.824 0

MSE[V^2] 91.371 80.094 5840 0

RMSE[V] 9.558 8.949 76.419 0

CV(RMSE) [V] 0.043 0.0378 0.345 0

𝑅2[V] 0.988 0.994 0.998 1

Anca BRINCOVEANU, E. FIORENTIS, R. PLAMANESCU,  Ana-Maria 
DUMITRESCU, Mihaela ALBU, Signal Model Adequacy Indicator for 
Power Quality Monitoring, International Workshop of 
Electromagnetic Compatibility, CEM-2022, Suceava, Sept. 2022
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𝑦𝑖 – model value 𝑥𝑖 – measured value,
n – number of measured values available during the analysis window 𝑇𝑟

𝑚 - number of parameters estimated in the equation; (𝑛−𝑚) is the residual degrees of 
freedom ; ෠𝑋 ̂ is the signal amplitude

𝑥𝑖 = 𝑃𝑖;  𝑦𝑖 = ത𝑦 =
σ
𝑖=1
𝑁𝑟 𝑃𝑖

𝑁𝑟
; ෤𝑦𝑖 =

σ
𝑖=1
𝑁𝑠𝑠 𝑃𝑖

𝑁𝑠𝑠
= ෤𝑦

𝐶𝑉(𝑅𝑀𝑆𝐸) =
1

ത𝑦

σ𝑖=1
𝑛 𝑥𝑖−𝑦𝑖

2

𝑛
𝑅2 = 1 −

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

σ𝑖=1
𝑛 𝑦𝑖 − ത𝑦 2

METRICS FOR POWER PROFILE VARIABILITY – LOW REPORTING RATES

𝐺𝑜𝐹 = 20𝑙𝑔
෠𝑋

1
𝑛 −𝑚

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2
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Anca Petruta Brincoveanu, Radu Plămănescu, Ana-Maria Dumitrescu, Irina Ciornei –
“Assessment of Power Profiles in LV distribution grids”, The 8th  Intern. Symposium on 
Electrical and Electronics Engineering, Galati, 26-28 Oct. 2023

METRICS FOR POWER PROFILE VARIABILITY –
EXAMPLE OF A HOUSEHOLD POWER PROFILE AND PV

NR. TIME MAE MSE RMSE CV(RMSE) MAPE MSPE 𝑅2 MASE

𝑇r1 00:15 5.09E+00 3.49E+01 5.91E+00 2.62E-02 1.23E-03 1.59E-06 -1.21E+01 3.11E+00
𝑇r2 00:30 3.20E+00 2.02E+01 4.49E+00 1.99E-02 1.35E-03 6.55E-07 -6.56E+00 1.96E+00
𝑇r3 00:45 2.13E+01 1.07E+03 3.26E+01 1.45E-01 5.41E-02 6.05E-05 -3.99E+02 2.21E+00
𝑇r4 01:00 6.31E+02 4.26E+05 6.53E+02 2.90E+00 1.94E-01 2.30E-02 -6.90E+00 1.36E+00
𝑇r5 01:15 4.80E+00 3.15E+01 5.62E+00 2.49E-02 3.74E-03 4.81E-06 -1.08E+01 2.94E+00
𝑇r6 01:30 3.15E+00 1.52E+01 3.90E+00 1.73E-02 2.34E-04 1.75E-06 -4.71E+00 1.93E+00
𝑇r7 01:45 4.35E+00 2.70E+01 5.19E+00 2.31E-02 8.17E-04 3.02E-06 -9.11E+00 2.66E+00

… … … … … … … … …
𝑇r95 23:45 3.36E+00 3.24E+01 5.69E+00 1.20E-02 3.96E-04 3.74E-07 -9.25E-01 8.19E-01
𝑇r96 24.00 2.39E+00 1.05E+01 3.25E+00 6.83E-03 4.00E-04 1.42E-07 3.75E-01 5.83E-01

NR. TIME MAE MSE RMSE CV(RMSE) MAPE MSPE 𝑅2 MASE

𝑇r1 00:30 4.84E+00 4.40E+01 6.63E+00 4.06E-02 1.98E-03 2.19E-04 -1.55E+01 2.95E+00
𝑇r2 01:00 1.20E+01 5.45E+02 2.33E+01 1.43E-01 5.33E-02 5.94E-05 -2.03E+02 2.13E+00
𝑇r3 01:30 4.09E+02 2.77E+05 5.26E+02 3.22E+00 1.15E-01 1.34E-02 -1.32E+01 1.76E+00
𝑇r4 02:00 3.87E+00 2.38E+01 4.88E+00 2.99E-02 3.80E-04 5.28E-06 -7.92E+00 2.37E+00
𝑇r5 02:30 5.59E+02 3.85E+05 6.20E+02 3.18E+00 3.84E-01 7.89E-02 -5.25E+00 1.59E+00
𝑇r6 03:00 4.29E+01 2.40E+03 4.90E+01 2.52E-01 5.30E-03 6.11E-04 -6.32E+02 1.87E+01
𝑇r7 03:30 6.37E+00 7.06E+01 8.40E+00 4.31E-02 1.45E-03 2.54E-06 -1.76E+01 3.24E+00
𝑇r8 04:00 3.72E+01 1.52E+03 3.90E+01 2.00E-01 1.38E-02 1.36E-04 -4.00E+02 1.91E+01

… … … … … … … … …
𝑇r47 23:30 1.84E+02 3.59E+04 1.90E+02 4.62E-01 1.62E-02 4.60E-04 -2.13E+03 3.52E+00
𝑇r48 24.00 5.63E+00 5.06E+01 7.12E+00 1.73E-02 9.99E-04 1.24E-06 -2.01E+00 1.37E+00

Metrics for active power profile for 𝑇𝑟= 30  minutes

Metrics for active power profile for 𝑇𝑟= 15  minutes

𝑇𝑤 =1s
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Define /select the model of the power profile

𝑃𝑖 = 0, 𝑦𝑖 = 𝑃𝑚𝑎𝑥, (∀) 𝑖 = 1, 𝑛, 𝑛 = 𝑇𝑟/𝑇𝑠

𝐺𝑜𝐹 = 20𝑙𝑔
𝑃𝑚𝑎𝑥

1
𝑛 − 1

σ𝑖=1
𝑛 0 − 𝑃𝑚𝑎𝑥

2

→ 𝟎

𝑃𝑖 = constant = 𝑃𝑛, 𝑦𝑖 = 𝑃𝑚𝑎𝑥, (∀) 𝑖 = 1, 𝑛, 𝑛 = 𝑇𝑟/𝑇𝑠. 

𝐺𝑜𝐹 = 20𝑙𝑔
𝑃𝑚𝑎𝑥

1
𝑛 − 1

σ𝑖=1
𝑛 𝑃𝑛 − 𝑃𝑚𝑎𝑥

2

LV circuit with Τ𝑃𝑛 𝑃𝑚𝑎𝑥 = 0.77, 

𝑮𝒐𝑭 is 12.73 dB.

GOF FOR POWER PROFILE VARIABILITY

𝑃𝑖 -corresponds to a real power profile data, 𝑃𝑖 ≤ 𝑃𝑛 < 𝑃𝑚𝑎𝑥,

𝑦𝑖 =
σ𝑖=1
n 𝑃𝑖

n
= ෨𝑃 < 𝑃𝑚𝑎𝑥, (∀) 𝑖 = 1, 𝑛, 𝑛 = 𝑇𝑟/𝑇𝑠

0 < 𝐺𝑜𝐹 = 20𝑙𝑔
𝑃𝑚𝑎𝑥

1
(𝑛 − 1)

σ𝑖=1
𝑛 (𝑃𝑖 − ෨𝑃)2

= 20 𝑙𝑔
𝑃𝑚𝑎𝑥

𝑠𝑡𝑑(𝑃𝑖)

𝑃𝑖 -corresponds to the real power profile obtain with a sampling 

rate 𝑓𝑠, 𝑃𝑖 ≤ 𝑃𝑛 < 𝑃𝑚𝑎𝑥, 𝑦𝑖 = 𝑃𝑚𝑎𝑥, (∀) 𝑖 = 1, 𝑛, 𝑛 = 𝑇𝑟/𝑇𝑠 .

𝐺𝑜𝐹 = 20𝑙𝑔
𝑃𝑚𝑎𝑥

1
𝑛 − 1

σ𝑖=1
𝑛 𝑃𝑖 − 𝑃𝑚𝑎𝑥

2



High Reporting Rate Measurements for Smart[er] Grids
Montevideo, 27 February 2025 

𝑇𝑟= 2 h, 𝑇𝑎 = 24 h

Load power profile 01.03.2023

GOF FOR POWER PROFILE VARIABILITY
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𝐺𝑜𝐹∗ = 20𝑙𝑔
𝑃𝑚𝑎𝑥

෨𝑃𝑗 − 𝑃𝑚𝑎𝑥

෨𝑃𝑗 is the daily average of the recorded load profile

Daily 𝑮𝒐𝑭 classified with one single value 

ഥ𝑃𝑗 =
σ𝑖=1
𝑛 𝑃𝑖𝑗

𝑛
, 𝑗 = 1, 𝑘

March 2023

𝑇𝑟= 24 h, 𝑓𝑠 = 1 frame/s, 𝑇𝑎 = 31 days

GOF FOR POWER PROFILE VARIABILITY

Monthly 𝑮𝒐𝑭 classified with one single value 

𝐺𝑜𝐹∗∗ = 20𝑙𝑔
𝑃𝑚𝑎𝑥

1
𝑘 − 1

σ𝑗=1
𝑘 ഥ𝑃𝑗 − 𝑃𝑚𝑎𝑥

2

ഥ𝑃𝑗 =
σ𝑖=1
𝑛 𝑃𝑖𝑗

𝑛
, 𝑗 = 1, 𝑘 𝐺𝑜𝐹∗∗ = 0.25 dB
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Day
CV(RMSD) [%]

min median max

1/3/2023 0.13 0.73 9.08

2/3/2023 0.18 1.76 8.15

3/3/2023 0.10 2.19 8.41

4/3/2023 0.15 1.07 7.64

5/3/2023 0.12 0.40 7.78

6/3/2023 0.04 0.39 7.39

7/3/2023 0.15 1.56 7.51

… … … …

30/3/2023 0.14 3.44 8.50

31/3/2023 0.12 1.12 7.55

𝑻𝒓 = 2 h

𝑇𝑟= 2 h, 𝑓𝑠 = 1 frame/s, 𝑇𝑎 = 24 h

𝑇𝑟= 2 h, 𝑓𝑠 = 4 frames/h, 𝑇𝑎 = 24 h
𝐶𝑉 𝑅𝑀𝑆𝐷 =

1

ത𝑦𝑝

σ𝑖=1
𝑛 𝑥𝑖 − 𝑦𝑖

2

𝑛

CV(RMSD)  FOR POWER PROFILE VARIABILITY
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Day
CVRMSD [%]

min median P95 max

1/3/2023 0.01 0.11 5.32 7.69

2/3/2023 0.02 0.17 4.78 7.46

3/3/2023 0.00 0.11 5.54 8.19

… … … … …

17/3/2023 0.01 0.12 6.00 7.83

… … … … …

29/3/2023 0.01 0.14 4.93 9.68

30/3/2023 0.00 0.11 4.60 7.71

31/3/2023 0.01 0.11 5.74 7.57

𝑻𝒓 = 15 minutes

𝑓𝑠 = 1 frame/s, 𝑇𝑎 = 24 h

CV(RMSD)  FOR POWER PROFILE VARIABILITY
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Day
CVRMSD [%]

min median P95 max

1/3/2023 0.01 0.11 5.32 7.69

2/3/2023 0.02 0.17 4.78 7.46

3/3/2023 0.00 0.11 5.54 8.19

… … … … …

17/3/2023 0.01 0.12 6.00 7.83

… … … … …

29/3/2023 0.01 0.14 4.93 9.68

30/3/2023 0.00 0.11 4.60 7.71

31/3/2023 0.01 0.11 5.74 7.57

𝑻𝒓 = 15 minutes

𝑓𝑠 = 1 frame/s, 𝑇𝑎 = 24 h

Day
CV(RMSD) [%]

min median max

1/3/2023 0.13 0.73 9.08

2/3/2023 0.18 1.76 8.15

3/3/2023 0.10 2.19 8.41

4/3/2023 0.15 1.07 7.64

5/3/2023 0.12 0.40 7.78

6/3/2023 0.04 0.39 7.39

7/3/2023 0.15 1.56 7.51

… … … …

30/3/2023 0.14 3.44 8.50

31/3/2023 0.12 1.12 7.55

𝑻𝒓 = 2 h

CV(RMSD)  FOR POWER PROFILE VARIABILITY
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EXAMPLE. FREQUENCY INFORMATION IN WAMCS USING PMUS

36

Analysis of frequency in case of generation loss caused by lightning

L. Toma et.ot.,  Frequency analysis in the Romanian 
power system under large perturbations, Proc. of 55th 
Universities Power Engineering Conference (UPEC 2020) 
– Torino, Italy, 1-4 September 2020
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EXAMPLES OF HIGH REPORTING RATES (PMUS).  SYSTEM INERTIA AND FREQUENCY VARIABILITY

CNPP_ev2: 16 August 2018
• Both units in operation
• Sudden full disconnection of 

the unit
• The instant of perturbation:

 4.4% wind generation
 6% power export

CNPP_ev1: 1st June 2017
• One unit was under planned maintenance (half 

inertia available) 
• Sudden full disconnection of the unit (no inertia 

remained)
• The instant of perturbation:

 18% wind generation
 17% power export

Cernavoda Nuclear Power Plant 2 x 700 MW

L. Toma, M. Sanduleac, M. Albu, C. Diaconu, 
C. Stanescu,  Frequency analysis in the 
Romanian power system under major grid 
disturbances, CIGRE e-Session, 2020SEL-487E
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𝑇𝑤= 1s 𝑇𝑤= 200ms

i

Metrics on 𝑻𝒘,𝒊

CV(RMSE) 𝑹𝟐

1
7.92E-06 0.9999

2
6.21E-06 1.0000

… … …

319 501E-04 0.9975

… … …

600 17.6E-06 0.9999

i

Metrics on 𝑻𝒘,𝒊

CV(RMSE) 𝑹𝟐

1
3.71E-06 1.0000

2
1.96E-06 1.0000

… … …

1594 876E-06 0.9923

… … …

3000 1.60E-06 1.0000

Frequency variation during the first event, in 4 different nodes of the Romanian 
transmission system, for 𝑇𝑠𝑠 =10 minutes. Further we analysed the signal with the 
highest variability (node 𝑁2). 

A. P. Brîncoveanu, E. Fiorentis, A. -

M. Dumitrescu and M. M. Albu, 

"Assessing Frequency Variability 

Using Long Term High Reporting 

Rate Measurements," 2023 Intern. 

Conf. on Electromechanical and 

Energy Systems (SIELMEN), 

Chisinau, Moldova, 2023, pp. 1-6

METRICS FOR FREQUENCY VARIABILITY - WAMSC
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METRICS FOR FREQUENCY VARIABILITY - WAMSC

Frequency variation during the second event for 𝑇𝑠𝑠 =10 minutes. 
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𝑓𝑚𝑜𝑑𝑒𝑙,𝑖 = 𝑓𝑘
∗, 𝑓𝑜𝑟 𝑁𝑤 𝑘 − 1 + 1 < 𝑖 < 𝑘𝑁𝑤𝑁𝑤 =

𝑇𝑤
𝑇𝑃𝑀𝑈

= 25;𝑓𝑘
∗ =

σ
𝑁𝑤 𝑘−1 +1
𝑘𝑁𝑤 𝑓𝑖

𝑁𝑤
, 𝑘 = 1,10

∆𝑓𝑚𝑜𝑑𝑒𝑙= 𝑓𝑖 − 𝑓𝑚𝑜𝑑𝑒𝑙

To better highlight the frequency variability: analyse the difference between the signal 𝑓𝑖 and a selected 
signal (model) for the case of pattern timeline of the 𝑻𝒘 =1s. The selected pattern 𝑓𝑚𝑜𝑑𝑒𝑙 is described by:

METRICS FOR FREQUENCY VARIABILITY - WAMSC

40

𝑇𝑤 =1s
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𝑇𝑤 =200 ms

METRICS FOR FREQUENCY VARIABILITY - WAMSC

A. P. Brîncoveanu, E. Fiorentis, A. -M. Dumitrescu and 
M. M. Albu, "Assessing Frequency Variability Using Long 
Term High Reporting Rate Measurements," 2023 Intern. 
Conf. on Electromechanical and Energy Systems 
(SIELMEN), Chisinau, Moldova, 2023, pp. 1-6, 

𝑁𝑤 =
𝑇𝑤
𝑇𝑃𝑀𝑈

= 5; 𝑓𝑘
∗ =

σ
𝑁𝑤 𝑘−1 +1
𝑘𝑁𝑤 𝑓𝑖

𝑁𝑤
, 𝑘 = 1,50
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METRICS FOR POWER FLOW VARIABILITY - WAMSC
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METRICS FOR POWER FLOW VARIABILITY - WAMSC
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 fusion of data recorded at significantly different reporting
rates increase the situational awareness

framework for knowledge extraction from HRR data. The 
process takes place at smart meter level  to increase the 
accuracy of the monitoring tools for distribution power grids 
by using statistics (the percentiles  - e.g., p95 and p99 and 
the cdf) able to capture system dynamics relevant for 
network diagnosis. 

M. Sanduleac, V. I. Ciornei, L. Toma, R. Plamanescu, A. -M. Dumitrescu and M. Albu, 
"High reporting rate smart metering data for enhanced grid monitoring and services 
for energy communities," in IEEE Transactions on Industrial Informatics, 2021

POWER PROFILES AND ENERGY COMMUNITIES.  
[ANOTHER] EXAMPLE OF DATA ANALYTICS
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DATASETS. DISSIMILARITY VS. VARIABILITY

Fig. 3. Daily active power measurements for a multiple residential unit building - student dormitories

tables. Main steps included data import and pre-processing,

e.g. timestamp formatting, outlier filtering and automated time

series forecasting. An initial example for using Hampel filter-

ing for outlier detection on the dormitory data from September

13th 2018 is introduced in Figure 4. The red points identify

the data points in the original timeseries for Figure 3 that have

been labeled as outlier using the current configuration of the

Hampel filter. The remaining blue line depicts the timeseries

with these outliers removed.

The overall outlier rate by using the standard parameters:

threshold for number of standard deviations (3) and neighbor

window size (15), ranges between 5 and 6 % for the analysed

days.

Fig. 4. Outlier detection using Hampel filter

We test the auto time series modelling method on both

the original and the Hampel filtered data with the following

configuration for the training stage:

model = Aut oTS(

f or ecast _l engt h=3,

f r equency=’ i nf er ’ ,

model _l i st =’ pr obabi l i st i c ’ ,

ensembl e=None,

max_gener at i ons=3,

num_val i dat i ons=2)

where model list denotes the subset of available models in

the auto-ts library, with a number of 430 models for the

probabilistic option. For computational efficiency, we do not

use the ensemble option while the number of validations is set

at 2, for improving model selection with limited penalty on

the performance. The sampling rate of the input time series is

inferred automatically from the DateTime index.

Figure 5 shows the day ahead forecast using the original

and filtered data for training at 20s time steps. This allows the

qualitative assessment of the prediction performance for the

original and filtered - outliers removed, input data, while the

quantitative metrics are subsequently introduced in Table I.

Fig. 5. Day-ahead predictions: original versus filtered data

The metrics used for evaluation during the model selection

include the following: Mean Absolute Error (MAE), Sym-

metric Mean Absolute Percentage loss (sMAPE) and Scaled

Pinball Loss (SPL), or Quantile Loss.
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Application: Energy forecasting in buildings
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Automatic Feature Extraction – tsfresh

Christ, M., Braun, N., 
Neuffer, J., & Kempa-Liehr, 
A. W. (2018). Time series 
feature extraction on 
basis of scalable 
hypothesis tests (tsfresh–
a python 
package). Neurocomputin
g, 307, 72-77.
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Matrix Profile (MP) Technique

• Data structure and family of algorithms for the efficient 
description of time series

• The matrix profile at location i records the (normalised 
Euclidean) distance of the subsequence T in position i to its 
nearest neighbor

C. M. Yeh et al., "Matrix Profile I: 
All Pairs Similarity Joins for Time 
Series: A Unifying View That
Includes Motifs, Discords and
Shapelets," 2016 IEEE 16th 
International Conference on Data 
Mining (ICDM), Barcelona, 2016
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MP is computed as a vector of values containing the minimum z-normalised
Euclidean distance d, by sliding a window of size m over a time series T of size n:

Various computationally efficient libraries and algorithms available

MP was investigated for the following features:

• Load and generation power profiles

• Added noise over input information

• Anomaly (discords) detection

• Evaluating the robustness of the MP

https://stumpy.readthedocs.io/en/lat
est/Tutorial_The_Matrix_Profile.html

FORECASTING. MULTI-SCALE DATA ANALYTICS FOR POWER PROFILES. 
MATRIX PROFILE
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• Development of data driven models that operate in a robust manner at various timescales

• Incorporate domain knowledge at pre-processing and feature engineering stages

• Potential for model compression to run on embedded hardware with resource constraints

• Micro-load forecasting and classification e.g. steady state and transients labelling

• How do data-driven models perform under varying input reporting rates? Can we keep the same models w/o 
retraining?

• One month of residental energy measurements sampled at 1s; Offline processing of daily text record files

Grigore Stamatescu, Irina Ciornei, 
Radu Plamanescu, Ana-Maria 
Dumitrescu, Mihaela Albu, Reporting 
Interval Impact on Deep Residential 
Energy Measurement Prediction, Proc. 
of AMPS2021, 1 Oct. 2021

MULTI-SCALE DATA ANALYTICS FOR POWER PROFILES
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Matrix Profile to 
identify most 
dissimilar 
sequence in the 
daily data (noon)

Matrix Profile to 
identify most 
dissimilar 
sequence in the  
monthly data 
(Sept. 1st)

Grigore Stamatescu, et 
ot., Reporting Interval 
Impact on Deep 
Residential Energy 
Measurement 
Prediction, Proc. of 
AMPS2021, 2021

MULTI-SCALE DATA ANALYTICS FOR POWER PROFILES. 
DISSIMILARITY VS. VARIABILITY
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DATA SETS

▶ Daily power profile from 
measurements with 1 frame/s 
reporting rate – Example

▶ Daily power profile from 
emulated meters with 4 frames/h 
reporting rate, using linear 
averaging
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▶ Daily matrix profile: 1 
frame/s reporting rate 
input measurements

▶ Daily matrix profile: 
averaged data

Fig. 3: Matrix profile for daily power measurements trace (1

frame/s reporting rate)

Fig. 4: Matrix profile for daily power measurement trace

(averaged)

appropriate measures can be taken with regard to the adaptive

(increased) sampling of the measurement and control actions.

z-normalisation of the time series ensures comparability across

multiple domains. The higher MP values for the second power

measurement time series can be explained though the steeper

changes on sparser discrete power levels produced during the

averaging procedure.

Fig. 5: Empirical distributions of the MP values

Data structure representation of the analysis function for a

single MP vector computation is presented below, correspon-

ing to the 1s sampled measurements. It allows programmatic

access to both the input values and the computed profile

values and also records the parametrisation options during the

procedure. In this case the mpx algorithm corresponds to a fast

implementation of the MP that does not use the Fast Fourier

Transform (FFT).

{ ’ al gor i t hm’ : ’ mpx’ ,

’ c l ass’ : ’ Mat r i xPr of i l e’ ,

’ dat a’ : { ’ quer y’ : None,

’ t s’ : ar r ay( [ 341. 99, 341. 99, 341. 99, . . . ,

296. 44, 296. 44, 296. 44] ) } ,

’ ez’ : 0,

’ j oi n’ : Fal se,

’ l mp’ : None,

’ l pi ’ : None,

’ met r i c’ : ’ eucl i dean’ ,

’ mp’ : ar r ay( [ 34. 81832531, 34. 80253447,

34. 786677 , . . . , 32. 89044937,

32. 88824545, 32. 88603246] ) ,

’ pi ’ : ar r ay( [ 360, 361, 362, . . . ,

6774, 6775, 6776] ) ,

’ r mp’ : None,

’ r pi ’ : None,

’ sampl e_pct ’ : 1,

’ w’ : 1324}

We further include the apartment dataset in the analysis.

Figure 6 presents one days of active power measurements for

each of the residential dwellings, taken during the same day

in September. A lower baseline power consumption can be

observed aswell asnarrower consumption peaks. In themiddle

of day an unusual pattern is represented which can correspond

to a particular appliance. This can thus be considered as a

potential candidate for flagging of anomalous behaviour.

Fig. 6: Daily active power measurements: house and apartment

The corresponding MP vectors are illustrated in Figure

7. We observe a larger variability in the apartment profile

corresponding to larger minimum distances between the sub-

sequences of the values which can be explained through a

large amplitude of the changes relative to the lower baseline.

The motif pattern which has been previously observed is not

replicated in this second dataset given several spikes in the

data at the beginning of the series.

Fig. 7: Comparative profiles between two dwellings

Fig. 3: Matrix profile for daily power measurements trace (1

frame/s reporting rate)

Fig. 4: Matrix profile for daily power measurement trace

(averaged)

appropriate measures can be taken with regard to the adaptive

(increased) sampling of the measurement and control actions.

z-normalisation of the time series ensures comparability across

multiple domains. The higher MP values for the second power

measurement time series can be explained though the steeper

changes on sparser discrete power levels produced during the

averaging procedure.

Fig. 5: Empirical distributions of the MP values

Data structure representation of the analysis function for a

single MP vector computation is presented below, correspon-

ing to the 1s sampled measurements. It allows programmatic

access to both the input values and the computed profile

values and also records the parametrisation options during the

procedure. In this case the mpx algorithm corresponds to a fast

implementation of the MP that does not use the Fast Fourier

Transform (FFT).

{ ’ al gor i t hm’ : ’ mpx’ ,

’ c l ass’ : ’ Mat r i xPr of i l e’ ,

’ dat a’ : { ’ quer y’ : None,

’ t s’ : ar r ay( [ 341. 99, 341. 99, 341. 99, . . . ,

296. 44, 296. 44, 296. 44] ) } ,

’ ez’ : 0,

’ j oi n’ : Fal se,

’ l mp’ : None,

’ l pi ’ : None,

’ met r i c’ : ’ eucl i dean’ ,

’ mp’ : ar r ay( [ 34. 81832531, 34. 80253447,

34. 786677 , . . . , 32. 89044937,

32. 88824545, 32. 88603246] ) ,

’ pi ’ : ar r ay( [ 360, 361, 362, . . . ,

6774, 6775, 6776] ) ,

’ r mp’ : None,

’ r pi ’ : None,

’ sampl e_pct ’ : 1,

’ w’ : 1324}

We further include the apartment dataset in the analysis.

Figure 6 presents one days of active power measurements for

each of the residential dwellings, taken during the same day

in September. A lower baseline power consumption can be

observed aswell asnarrower consumption peaks. In themiddle

of day an unusual pattern is represented which can correspond

to a particular appliance. This can thus be considered as a

potential candidate for flagging of anomalous behaviour.

Fig. 6: Daily active power measurements: house and apartment

The corresponding MP vectors are illustrated in Figure

7. We observe a larger variability in the apartment profile

corresponding to larger minimum distances between the sub-

sequences of the values which can be explained through a

large amplitude of the changes relative to the lower baseline.

The motif pattern which has been previously observed is not

replicated in this second dataset given several spikes in the

data at the beginning of the series.

Fig. 7: Comparative profiles between two dwellings

Daily Matrix Profiles
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• Uses a sliding window applied to the measurement time
series in which the individual values are compared to the
statistical distribution of their neighbours to flag and
replace the considered outliers in the original time series

• Median Absolute Deviation (MAD) indicator represents the
median of the absolute deviations from the median

• MAD linked to SD through: 
• k – scale factor (~1.486 for Normal distribution)

Grigore Stamatescu, et ot., Leveraging 
Anomaly Detection and AutoML for 
Modelling Residential Measurement 
Power Traces, Proc. of AMPS2023, 2023

ANOMALY DETECTION – HAMPEL FILTER

filtering yields an improvement in 
the prediction performance given 
increased robustness and lower 
variability of the input data



High Reporting Rate Measurements for Smart[er] Grids
Montevideo, 27 February 2025 

PV Power profile

5

Student building power 
profile

MULTI-SCALE DATA ANALYTICS FOR POWER PROFILES. 
DISSIMILARITY VS. VARIABILITY

Stability and 
robustness of 
the method: 
for varying 
noise level
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• SMART[ER] POWER SYSTEMS: NEW PARADIGM FOR CONTROL

• MEASUREMENTS ARE LINKED TO INHERITED MODELS

• IMPORTANCE OF MEASUREMENT TIME, HIDDEN AGGREGATION AND REPORTING RATE

• HIGH REPORTING RATE MEASUREMENTS [SMART METERS] 

• MEASURES OF VARIABILITY – INFORMATION LOSS, R2, CV(RMSE), GOF

• EXAMPLE: VARIABILITY OF POWER PROFILES , VARIABILITY OF FREQUENCY E

• LEMENTS OF DATA ANALYTICS FOR LOW INERTIA ENERGY SYSTEMS

• FORECASTING BASED ON OUTLIERS FILTERING (AS A FUNCTION OF VARIABILITY)

WRAP-UP
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