

Stability Modelling and Analysis of Converter Driven Power System

Bikash Pal Professor, Imperial College London

Overview

- Stability in recent context
- Modelling
- Analysis
- Insight
- Recommendations

Time Scales of Power System Dynamic Phenomena

- electromagnetic phenomena
- electromechanical phenomena

- electromechanical transients could several simplifications in characterization and analysis of the related phenomena
 - Phasors approach

New classification diagram

EE

Time-scale representation aspects

Recent incidence in UK Transmission

- On 24/08/2021 severe voltage disturbances were observed on the SSEN-T and SPEN transmission systems.
- Major disturbance lasted 20-25 seconds on two occasions, approx. 30 minutes apart
- Investigation of available data suggests:
 - The oscillations with the largest magnitude were in the north of Scotland
 - The oscillations had a frequency of \approx 8 Hz
- Some Users tripped off during the disturbances

nationalgridESO

Impedance approach to stability modelling: frequencydomain

Impedance approach

& Control & Dower Research Group

Objective

$\begin{bmatrix} Z_{dd}(s) & Z_{dq}(s) \\ Z_{qd}(s) & Z_{qq}(s) \end{bmatrix}$

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

System identification problem is "not trivial"

Impedance estimation

Impedance estimation: approximation

Real transfer functions $\dot{x} = Ax + Bu$ $\begin{bmatrix} Z_{dd}(s) & Z_{dq}(s) \\ Z_{qd}(s) & Z_{qq}(s) \end{bmatrix}$ y = Cx + DuVector fitting $G(s) \approx \sum_{i=1}^{n} \frac{r_i}{s - p_i} + d$ 4 unknowns At least 2 measurements tests

Example: average model of VSC with PLL and current control

A. Rygg and M. Molinas, "Apparent Impedance Analysis: A Small-Signal Method for Stability Analysis of Power Electronic-Based Systems," in the Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1474-1486, Dec. 2017

Power & Energy Society

Example reproduced in PSCAD: average model of VSC with PLL and current control

EEE

Example reproduced in PSCAD: average model of VSC with PLL and current control including delay

Power & Energy Society

Example: MMC STATCOM with detailed control structure

Admittance estimation: Vector fitting

 Y_{dq}

10²

frequency [Hz] Y_{qq}

10²

frequency [Hz]

10³

10³

[rad]

8

[rad] 2

Phase [

10¹

103

10³

0 ha

101

Admittance estimation: Vector fitting

Example: MMC STATCOM with detailed control structure (SCR =1.0)

Impact of Time step for frequency sweep on admittance

 The MMC STATCOM model uses a carrier with a frequency of 360 [Hz], and each arm has 44 power modules, the effective update frequency is 15,840 [Hz]. In this case, the solution time-step should be at most 63 [µs].

Impact of Measurement delay on stability margin

• Measurement delays reduce significantly the stability margin of the STATCOM module

Stability analysis of power systems

- Synchronous machines
- STATCOM (MMC)
- Wind Farm (VSC)
- Networks
- Loads

39 Bus system in PSCAD

- 39 Bus system in 345 [kV]
- Analogue to the DigDILENT
 PowerFactory system
- Synchronous machines with AVR, Governor and steam turbine dynamics
- Lines modelled as π -circuits

& Control & Cower Research Group

39 Bus system in PSCAD

• Dynamic response for fault on Bus 16 cleared after 180 [ms]

RMS simulation

39 Bus system in PSCAD

39 Bus system in PSCAD : Test case for stability analys

39 Bus system in PSCAD

Stability analysis for varying grid strength (WF only)

Sensitivity over the grid strength at V1 by varying Z_{th}

Stability analysis for varying grid strength (WF only)

Results in reduced system

Impact of STATCOM AC voltage loop gain k_{pv} on stability

STATCOM loop gain Kpv on relative contribution to stability

Validation in full 39 bus PSCAD model

PSCAD results full 39 bus system, changes on proportional gain

Insights

- Impedance estimation-based stability assessment tool takes care of the detail dynamic model of MMC technology used in all dynamic reactive power support devices
- The model is comprehensive in assessing the network stability impact of control delay, varying network short circuit capacity and fault ride through (FRT) capability of these devices during network events.

Insights

- The approach has demonstrated that real network operability margin is significantly lower in low short circuit cases when compared to the same obtained through time average simplified model of these devices.
- The control delay associated with these devices further shrink the stability margin.

Recommendations

- It is very much required to have detailed models of converter-based devices when performing grid connection studies in Electro-Magnetic Transient (EMT) time scale
- Stability assessment studies need to be performed for varying grid strengths/short circuit level at the point of connection as well as
 Transmission voltage levels

Recommendations

- TNO should insist on various other parametric sensitivity studies regarding key control schemes, interface PLL technologies etc.
- The grid connection study specification should be amended with these requirements so that any connection study adheres to these specifications.

Researcher

- Dr Nicolas Cifuentes
 - MEng, Universidad de Chile
 - PhD , Imperial College London

 N. A. Cifuentes Otto, M. Sun, R. Gupta and B. C. Pal, "Black-Box Impedance-Based Stability Assessment of Dynamic Interactions Between Converters and Grid," in *IEEE Transactions on Power Systems* N. Cifuentes and B. C. Pal, "A New Approach to the Fault Location Problem: Using the Fault's Transient Intermediate Frequency Response," in *IEEE Open Access Journal of Power and Energy*, vol. 8, pp. 510-521, 2021,

Researchers

Our funding supports

Comments or Questions

