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Time Scales of Power System Dynamic Phenomena

Time scales for various classes of dynamic
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Definition and Classification of power system stability

New classification diagram

Power system stability

Electric Resonance Converter- Rotor angle Voltage Frequency
stability driven stability stability stability stability
v L
Fast Slow . Small- Large- Small-
SSR DO interaction interaction Transient disturbance | | disturbance disturbance
‘ Short term ‘ ‘ Long term ‘ ‘ Short term ‘ Long term ‘

New (in)stability categories
motivated by the increasing use of
converter-interfaced generators
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Definition and Classification of power system stability

Ime-SCale representation aspects

Power system stability

Electric Resonance Converter- Rotor angle Voltage Frequency
stability driven stability stability stability stability
v A
Fast Slow . Small- Large- Small-
SSR DDSSO interaction interaction Transient disturbance | | disturbance disturbance
‘ Short term ‘ Long term ‘ Short term Long term
Electromagnetlc transient

modeling required Phasor domain modeling is
appropriate
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Recent incidence in UK Transmission

*On 24/08/2021 severe voltage disturbances were
observed on the SSEN-T and SPEN transmission
systems.

* Major disturbance lasted 20-25 seconds on two
occasions, approx. 30 minutes apart

* Investigation of available data suggests:

kv

* The oscillations with the largest magnitude
were in the north of Scotland

* The oscillations had a frequency of =8 Hz
* Some Users tripped off during the disturbances
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Impedance approach to stability modelling: frequen

domain
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Impedance approach

Va(s)
Vp(s)
Ve(s)

‘ = Zapc(S) l

Ia(s)
I (s)
I.(s

]_

Id(S)

Vd(S)l [de(s) Zaq(s)
1 q(8)

V (s) qd(S) qu(s)

Real transfer functions

Y Hl
1 1
Complex transfer functions

(s tjw)] _
Va(s —jo)]

pp (s) an(s)] llp (s +jw;)
np(S) Zan($)| Uy (s — jw;)



Objective

Measure Use for stability Limitation
Complex transfer functions } |
; Limited to only a single
Zyn(S) Z,n(s
[ pr ES§ an Esi | converter to infinite-bus
np nn scenario
Real transfer functions
Zaa(s) Zaq(s) x = Ax + Bu System identification
Zga(s) Zgq(s) y =Cx+ Du problem is “not trivial”
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Impedance estimation

Real transfer functions
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~Francis, R. Burgos, D. Boroyevich, F. Wang and K. Karimi, "An algorithm and |mplementat|on system for measuring impedance in the D-Q
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Impedance estimation: approximation

Real transfer functions

x =Ax + Bu

[de(s) Zgq(s) y = Cx + Du
qu(S) qu(S) I

l .
’r'.
4 unknowns Vector fitting G(s) = z _‘ +d

l = ° TP

At least 2 [

measurements tests
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Impedance estimation: Vector fitting

Example: average model of VSC with PLL and current control
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~Rygg and M. Molinas, "Apparent Impedance Analysis: A Small-Signal Method for Stability Analysis of Power Electronic-Based Systems," in
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Impedance estimation: Vector fitting

Example reproduced in PSCAD: average model of VSC with PLL and

current control
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Impedance estimation: Vector fitting

Research Group

Example reproduced in PSCAD: average model of VSC with PLL and
current control including delay
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Impedance estimation: Vector fitting

Example: MMC STATCOM with detailed control structure
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Admittance estimation: Vector fitting

Example: MMC STATCOM with detailed control structure (SCR =10.0)
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Admittance estimation: Vector fitting

Example: MMC STATCOM with detailed control structure (SCR =1.0)
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Impact of Time step for frequency sweep on admittance

« The MMC STATCOM model uses a carrier with a frequency of 360 [Hz], and each arm
has 44 power modules, the effective update frequency is 15,840 [Hz]. In this case, the
solution time-step should be at most 63 [ps].
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Impact of Measurement delay on stability margin

+ Measurement delays reduce significantly the stability margin of the STATCOM module

¢) 20 [ps] dela

a) No dela b) 10 [us| delay

o openn ey

e . OIEEE



Stability analysis of power systems

« Synchronous machines
STATCOM (MMC)
 Wind Farm (VSC)

* Networks

* Loads
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39 Bus system in PSCAD

) O * 39 Bus system in 345 [kV]
4@:  Analogue to the DigDILENT
- J@ﬁ* " _ i PowerFactory system
a%mjg ég T Synchronous machines with
- AVR, Governor and steam
. () turbine dynamics

 Lines modelled as 1T-circuits




39 Bus system in PSCAD

« Dynamic response for fault on Bus 16 cleared after 180 [ms]

EMT simulation
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39 Bus system in PSCAD
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39 Bus system in PSCAD
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Stability analysis for varying grid strength (WF only)

Sensitivity over the grid strength at V1 by varying Z;;,

System poles
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Stability analysis for varying grid strength (WF only)

Results in reduced system

System poles
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Impact of STATCOM AC voltage loop gain k,,,, on stability
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STATCOM loop gain Kpv on relative contribution to stability
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Validation in full 39 bus PSCAD model

PSCAD results full 39 bus system, changes on proportional gain
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Insights

* Impedance estimation-based stability assessment tool
takes care of the detail dynamic model of MMC
technology used in all dynamic reactive power support
devices

 The model is comprehensive in assessing the network
stability impact of control delay, varying network short
circuit capacity and fault ride through (FRT) capability
of these devices during network events.
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Insights

* The approach has demonstrated that real network
operability margin is significantly lower in low short
circuit cases when compared to the same obtained
through time average simplified model of these
devices.

* The control delay associated with these devices
further shrink the stability margin.

@’Es A, < EEE



Recommendations

 Itis very much required to have detailed models
of converter-based devices when performing grid
connection studies in Electro-Magnetic Transient
(EMT) time scale

« Stability assessment studies need to be

performed for varying grid strengths/short circuit
level at the point of connection as well as
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Recommendations

* TNO should insist on various other parametric
sensitivity studies regarding key control
schemes, interface PLL technologies etc.

* The grid connection study specification should
be amended with these requirements so that any
connection study adheres to these
specifications.
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