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Overview 

• Stability in recent context 

• Modelling 

• Analysis 

• Insight

• Recommendations
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Time Scales of Power System Dynamic Phenomena

• electromagnetic 
phenomena

• electromechanical 
phenomena
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Time scales for various classes of dynamic 
phenomena in power systems

• electromechanical transients enabled 
several simplifications in 
characterization and analysis of the 
related phenomena

– Phasors approach 



New classification diagram

4Definition and Classification of power system stability

New (in)stability categories
motivated by the increasing use of 

converter-interfaced generators



Time-scale representation aspects 

5Definition and Classification of power system stability

Electromagnetic transient 
modeling required Phasor domain modeling is 

appropriate



• On 24/08/2021 severe voltage disturbances were 

observed on the SSEN-T and SPEN transmission 

systems.

• Major disturbance lasted 20-25 seconds on two 

occasions, approx. 30 minutes apart

• Investigation of available data suggests:

• The oscillations with the largest magnitude 

were in the north of Scotland

• The oscillations had a frequency of ≈8 Hz

• Some Users tripped off during the disturbances

Recent incidence  in UK Transmission  



Impedance approach to stability modelling: frequency-
domain
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Impedance approach
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Objective
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Measure Use for stability
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Limitation

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

Limited to only a single 

converter to infinite-bus 

scenario

System identification 

problem is “not trivial”

Real transfer functions

Complex transfer functions



Impedance estimation
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Real transfer functions
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G. Francis, R. Burgos, D. Boroyevich, F. Wang and K. Karimi, "An algorithm and implementation system for measuring impedance in the D-Q 

domain," 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, 2011, pp. 3221-3228, doi: 10.1109/ECCE.2011.6064203.



Impedance estimation: approximation
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Impedance estimation: Vector fitting
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Example: average model of VSC with PLL and current control

A. Rygg and M. Molinas, "Apparent Impedance Analysis: A Small-Signal Method for Stability Analysis of Power Electronic-Based Systems," in 

IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 4, pp. 1474-1486, Dec. 2017



Impedance estimation: Vector fitting
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Example reproduced in PSCAD: average model of VSC with PLL and 

current control

measurements fitting



Impedance estimation: Vector fitting
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Example reproduced in PSCAD: average model of VSC with PLL and 

current control including delay

measurements fitting



Impedance estimation: Vector fitting
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Example: MMC STATCOM with detailed control structure

measurements fitting



Admittance estimation: Vector fitting
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Example: MMC STATCOM with detailed control structure (SCR =10.0)

measurements fitting



Admittance estimation: Vector fitting
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Example: MMC STATCOM with detailed control structure (SCR =1.0)

measurements fitting



Impact of Time step for frequency sweep on admittance 
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• The MMC STATCOM model uses a carrier with a frequency of 360 [Hz], and each arm 

has 44 power modules, the effective update frequency is 15,840 [Hz]. In this case, the 

solution time-step should be at most  63 [μs].

Time step 10 [μs] Time step 60 [μs] Time step 100 [μs]



Impact of Measurement delay on stability margin 
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• Measurement delays reduce significantly the stability margin of the STATCOM module



Stability analysis of power systems 
• Synchronous machines

• STATCOM (MMC)

• Wind Farm (VSC)

• Networks

• Loads 
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39 Bus system in PSCAD
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• 39 Bus system in 345 [kV]

• Analogue to the DigDILENT

PowerFactory system

• Synchronous machines with 

AVR, Governor and steam 

turbine dynamics

• Lines modelled as π-circuits



39 Bus system in PSCAD
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• Dynamic response for fault on Bus 16 cleared after 180 [ms]

EMT simulation RMS simulation



39 Bus system in PSCAD
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STATCOM



39 Bus system in PSCAD : Test case  for stability analsys
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39 Bus system in PSCAD
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Stability analysis for varying grid strength (WF only)

27

Sensitivity over the grid strength at V1 by varying 𝑍𝑡ℎ
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Stability analysis for varying grid strength (WF only)
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Results in reduced system
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Impact of STATCOM  AC voltage loop gain 𝒌𝒑𝒗 on stability 
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STATCOM loop gain Kpv on relative contribution to stability



Validation in full 39 bus PSCAD model
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PSCAD results full 39 bus system, changes on proportional gain



Insights
• Impedance estimation-based stability assessment tool 

takes care of the detail dynamic model of MMC 

technology used in all dynamic reactive power support 

devices 

• The model is comprehensive in assessing the network 

stability impact of control delay, varying network short 

circuit capacity and fault ride through (FRT) capability 

of these devices during network events.
32



Insights
• The approach has demonstrated that real network 

operability margin is significantly lower in low short 

circuit cases when compared to the same obtained 

through time average simplified model of these 

devices. 

• The control delay associated with these devices 

further shrink the stability margin.
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Recommendations 

• It is very much required to have detailed models 

of converter-based devices when performing grid 

connection studies in Electro-Magnetic Transient 

(EMT) time scale   

• Stability assessment studies need to be 

performed for varying grid strengths/short circuit 

level at the point of connection as well as 

transmission voltage levels. 34



Recommendations
• TNO should insist on various other parametric 

sensitivity studies regarding key control 

schemes, interface PLL technologies etc.

• The grid connection study specification should 

be amended with these requirements so that any 

connection study adheres to these 

specifications.  
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Comments or Questions

41


