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Evolutionary Algorithms
and the No Free Lunch Theorem (NFL)

Wolpert and Macready (1997): No Free Lunch Theorems for
Optimization - IEEE TEC (1)1: 67-82

- Taken over the set of all possible combinatorial optimization

problems?*, the performance of an two search algorithms** is the same

For any two “black-box” optimization algorithms a, and a:

> P@E|f.ma)=> P(E|f,ma,)

- m is the number of time steps
- d,, is a particular set of m values (for distinct visiting points)
- Cis the cost value of {d,, }

- fis a combinatorial optimization problem

Danger of comparing algorithms on a small sample of problems

We must incorporate problem-specific knowledge into the behavior
of the algorithm (from weak to strong search, in Al parlance)

*

*%

f X - Yand|X|and |Y|are finite

Black boxes do not rely explicitly on cost structure of partial solutions, like branch-and-bound
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No Free Lunch Theorem (NFL) — cont.

» For any optimization algorithm, an elevated performance
over one class of problems is offset by degraded
performance over another class

» The performance average of a given optimization algorithm
over the entire class of potential problems is constant.
- If an algorithm performs better than random search for some

problems, it will perform worse than random search for other
problems, maintaining the performance average constant.
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No Free Lunch Theorem (NFL) — cont.

» For any optimization algorithm, an elevated performance
over one class of problems is offset by degraded
performance over another class

» The performance average of a given optimization algorithm
over the entire class of potential problems is constant.

- If an algorithm performs better than random search for some
problems, it will perform worse than random search for other
problems, maintaining the performance average constant.

* Any one set of potentially optimal algorithm parameters can
be considered valid only for a limited subset of problems and
should not be expected to result in consistently superior
performance over the entire space of optimization problems.

* Theoretically this applies only to problems closed under
permutation.

* In MOO problems holds over the set of all MOO problems
that share the same type of Pareto Front (Corne & Knowles)
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No Free Lunch Theorem (NFL): Take away

* General-purpose universal optimization strategy is
impossible, and the only way one strategy can outperform
another is if it is specialized to the structure of the specific
problem under consideration (Ho & Pepyne, 2001).

» Therefore, it is essential to leverage specific problem domain
knowledge and incorporate it into the algorithm. Some of this
knowledge will be embedded in the design of the algorithms,
and some explicitly through meta-heuristics
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Example of Embedding Knowledge in the
Design of an Evolutionary Algorithm

« Solution Representation
- Data Structures (Parsimonious; Avoid unfeasible solutions)
- Encoding (Natural encoding: binary, real, integer)
- Constraints (Static: embedded in DS; Dynamic: penalty functions)
« Initial Population
- Boundary Conditions (Exercise boundary conditions)
- Best Guesses (Seed candidate solutions)
« Variational and Selection Operators
- Customized Mutation (self-repair)
< - Customized Crossover
- Variable Selection Pressure (Increasing from linear to NL)
* Assignment, Tuning and Control of EA parameters
- Prior Design (Usually from literature studies of parameters)

- Offline Tuning -
- On-Line Control }<::||Meta-Heur|st|cs

Implicit KR

Explicit KR
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Semantic Clarification

» Meta-heuristics -1
The use of heuristic procedures to extend search and
optimization algorithms to avoid local optima

* Meta-heuristics -2

The use of heuristic procedures at the meta-level to:
» Control/Guide
»Tune
» Allocate/Reallocate computational resources for
»Reasoning about

the object-level problem solver to improve the
guality, performance, or efficiency of its solution
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Off-line Meta-Heuristics
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On-line Meta-Heuristics:

Knowledge-based Controller

for

Object-level Problem Solver

4>
m Off-line KB definition

State Variables: Control
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Run-time Environment
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Problem Solving Technologies

“In contrast to traditional hard computing, soft
computing exploits the tolerance for imprecision,
uncertainty, and partial truth to achieve tractability,
robustness, low solution-cost, and betterrapport
with reality” (Zadeh 1991) =

HARD COMPUTING OFT COMPUTING

Precise Models

—

Approximate Models

—

Symbolic Traditiona _ Functional
Logic Numerical Approxm_1ate
Reasoning Modeling and Reasoning
(Traditional Al) Search
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Soft Computing: Hybrid Probabilistic Systems
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Soft Computing: Hybrid FL Systems
-
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Soft Computing: Hybrid NN Systems
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Soft Computing: Hybrid NN Systems
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Soft Computing: berid EA sttems
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Soft Computing
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Soft Computing: berid EA sttems
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Soft Computing: berid EA sttems
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NFL, Meta-Heuristics & Hybrid SC: Outline

» The NFL

* Tuning or Controlling the Object-Level Problem Solver
(PS) with Meta-Heuristics

» Soft Computing Overview
- SC Components: PR, FL, NN, EA
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Fuzzy Logic Genealogy

* Origins: MVL for treatment of imprecision
and vagueness

- 1930s: Post, Kleene, and Lukasiewicz
attempted to represent undetermined,
unknown, and other possible intermediate
truth-values.

- 1937: Max Black suggested the use of a
consistency profile to represent vague
(ambiguous) concepts

- 1965: Zadeh proposed a complete theory of
fuzzy sets (and its isomorphic fuzzy logic), to
represent and manipulate ill-defined concepts
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Fuzzy Logic : Linguistic Variables

* Fuzzy logic give us alanguage (with syntax and
local semantics), in which we can translate our
gualitative domain knowledge.

» Linguistic variables to model dynamic systems

* These variables take linguistic values that are
characterized by:

- alabel - a sentence generated from the
syntax

- ameaning - a membership function
determined by a local semantic procedure

|EEE Argentina, 11 Marzo 2004 PPB 30

Page 15

3/22/2004

15



Fuzzy Logic : Reasoning Methods

* The meaning of a linguistic variable may be
interpreted as a elastic constraint on its value.

* These constraints are propagated by fuzzy
inference operations, based on the generalized
modus-ponens.

* A FL Controller (FLC) applies this reasoning
system to a Knowledge Base (KB) containing the
problem domain heuristics.

* The inference is the result of interpolating
among the outputs of all relevant rules.

* The outcome is a membership distribution on

the output space, which is defuzzified to produce
a crisp output.
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Fuzzy Logic Control : Inference Method

Input:

Opened system mam
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FLC Inference Method (cont.)

A FLC (KB + Reasoning Mechanism)
defines a deterministic response
surface in the cross product of state
and output spaces, which
approximates the original relationship.

* The FLC leverages the interpolation
properties of this reasoning
mechanism, to exhibit robustness with
respect to parameter variations,
disturbances, etc.
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Example (MISO): Max-min Composition
with Centroid Defuzzification

oIf Xis SMALL and Y is SMALL then Zis NEG. LARGE

oIf X'is SMALL and Y is LARGE the Z is NEG. SMALL

oIf Xis LARGE and Y is SMALL the Z is POS. SMALL
Xis LARGE and Y is LARGE then Z is POS. LARGE
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Evolutionary Algorithms (EA)

EA are part of the Derivative-Free Optimization
and Search Methods:

- Evolutionary Algorithms

- Simulated annealing (SA)

- Random search

- Downhill simplex search

- Tabu search

EA consists of:
- Evolution Strategies (ES)
- Evolutionary Programming (EP)
- Genetic Algorithms (GA)
- Genetic Programming (GP)
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Soft Computing: EA Systems

p
Approximate J Functional Approximation/

L Reasoning Randomized Search
— — oo
Lprobabinstic Multivalued & ( Neural ’ Evolutionary
Models Fuzzy Logics Networks Algorithms
s N/ e\

Genetic

* Most Evolutionary Algorithms Evolution
(EAs) can be described by: Strategies

Algorithms
| X[t + 1] = s(v(x[t])) I

. . Progr.

- X[t] : the population at time t

under representation x
- v : is the variation operator(s) Programs
- s : is the selection operator
- . J
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Evolutionary Algorithms: ES

*Evolutionary Strateqgies (ES)
- Originally proposed for the optimization of
continuous functions

- (1, N)-ESand (u + A)-ES
» A population of 4 parents generate A offspring
» Best U offspring are selected in the next generation
» (U, A)-ES: parents are excluded from selection
» (L + A)-ES: parents are included in selection

- Started as (1+1)-ES (Reschenberg) and evolved
to (U + A)-ES (Schwefel)

- Started with Mutation only (with individual
mutation operator) and later added a
recombination operator

- Focus on behavior of individuals
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Evolutionary Algorithms: EP

eEvolutionary Programming (EP)

- Originally proposed for sequence predictiom
and optimal gaming strategies

- Currently focused on continuous parameter
optimization and training of NNs

- Could be considered a special case of (U + )
-ES without recombination operator

- Focus on behavior of species (hence no
crossover)

- Proposed by Larry Fogel (1963)
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Evolutionary Algorithms: GA

*Genetic Algorithms (GA)

Perform arandomized search in solution space using a
genotypic rather than a phenotypic

Each solution is encoded as a chromosome in a population (a
binary, integer, or real-valued string)

» Each string’s element represents a particular feature of the
solution

The string is evaluated by a fitness function to determine the
solution’s quality

» Better-fit solutions survive and produce offspring
» Less-fit solutions are culled from the population
Strings are evolved using mutation & recombination operators.

New individuals created by these operators form next generation of
solutions

Started by Holland (1962; 1975)
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Evolutionary Algorithms: GP

Genetic Programming (GP)

- A special case of Genetic Algorithms

»Chromosomes have a hierarchical rather than a linear
structure

»Their sizes are not predefined
»Individuals are tree-structured programs
»Modified operators are applied to sub-trees or single nodes

- Proposed by Koza (1992)
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A Trend Toward Convergence among EAs

* EA components have increasingly shared their

typical traits:
- ES have added recombination operators similar to GAs,

- GAs have been extended by the use of real-number-encoded
chromosomes, adaptive mutation rates, and additive mutation
operators (similar to ES).

- EP is similar to a (u+p)-ES without recombination operator

* EA exhibit an adaptive behavior that allows them to handle non-linear,
high dimensional problems without requiring differentiability or explicit
knowledge of the problem structure.

» EA are very robust to time-varying behavior, even though they may
exhibit low speed of convergence.
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Modeling

* Model =
Structure + Parameters + Search Method

* Classical control theory:
- Structure: order of the differential equations

- Parameters: coefficients of differential
equation.

- Search method: LMSE, Pole-placement, etc.
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Modeling Using FLC (Mamdani type)
A

Approximate Functional Approximation/ ’
Reasoning Randomized Search

\
Probabilistic | Multivalued & Neural Evolutionary
Models Fuzzy Logics Networks Algorithms

~ N
J * A Mamdani- type FLC approximates a
relationship between a state X and an
output Y by using a KB and a reasoning

mechanism (generalized modus-ponens).

» The Knowledge Base (KB) is defined by:

- Scaling factors (SF): ranges of values of
state and output variables

- Termset (TS): membership functions of
values

- Ruleset (RS): a syntactic mapping of
symbols from X to Y

Fuzzy Logic
Controllers
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Soft Computing: EA Systems

A —
Approximate Functional Approximation/
Reasoning Randomized Search
—

Probabilistic || Multivalued & Neural Evolutionary
Models Fuzzy Logics Networks Algorithms

/ N/ — N\
-The structure of the model is the : :
representation of an individual in the Gen_et|c
population (e.g., binary string, vector, Strategies Algorithms
parse tree, Finite State Machine).

Population Size, Probability of Mutation, Progr.
Prob. of Recombination, Generation
Gap, etc. Evolutionary
-The search method is a global search Programs

based on maximization of population

fitness function

-The parameters of the model are the

|EEE Argentina, 11 Marzo 2004 PPB 44

Page 22

3/22/2004

22



NFL, Meta-Heuristics & Hybrid SC: Outline

o/

{e) - FLC Parameter Tuning by EA
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(PS) with Meta-Heuristics
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with FL and EA
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Soft Computing & Related Technologies at GE

GE Medical Systems

* SPT Auto Analysis for MRI (FL)

« Reverse Engineering of Picker (FL)
« FE Analysis tool (FL)

GE Appliances
« Preferred Service Contracts (Stat.)
« Call Center Support (CBR)

GE Capital Services « X-Ray error Logs Analysis (CBR)

* GE Mortgages GE Aircraft Engines
Collateral Evaluation (Fusion/FL/CBR « Center for Remote Diagn. (CBR)

¢ GE Insurance » Customer Response Center (CBR)

Digital Underwriting (FL/Stat/EA/NN » Anomaly Detection (FL/Stat.)
GE Plastics « IMATE - Maintenance Advisor (NN/FL)

. « Resolver Drift - Sensor Fusion (FL)
* Automated Color Matching (CBR) G TrmsEerEin SysEs

* Log from Transportation DB (CBR)

LM Fed. Systems » Prototype Train Handling Cntrl. (FL/EA

« Scheduling Maintenance for * Prototype Trend Analysis (Stat.)
Constellation of Satellites (GA) » Embedded/Remote Diagnostics (BBN)

" T | . UAV Mission Manager (Al/FL/GA)

GE Power Gen. Systems

* Remote Anomaly Detection (Stat.)

* Embedded/Remote Diagnostics (BBN)
» Call Center Problem/Solution (CBR)

LM SkunkWorks

\ LM ORSS
K * Vessel Management Syst. (Al/GA)

GE Ind. Syst. /GE Trading
» Paper Web Breakage Prediction
(NN/Stat./Induction)
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Soft Computing & Related Technologies at GE

Statistics

PO Statistical Models (CART, MARS)
Physics-Based Models d

Data Mining

Al
Rule Based Reas.
\b Case Based Reas.

Induction Trees 0
Fusion
|IEEE Argentina, 11 Marzo 2004 PPB 47
Page 24

24



